Cholinergic Neuromodulation Changes Phase Response Curve Shape and Type in Cortical Pyramidal Neurons
نویسندگان
چکیده
Spike generation in cortical neurons depends on the interplay between diverse intrinsic conductances. The phase response curve (PRC) is a measure of the spike time shift caused by perturbations of the membrane potential as a function of the phase of the spike cycle of a neuron. Near the rheobase, purely positive (type I) phase-response curves are associated with an onset of repetitive firing through a saddle-node bifurcation, whereas biphasic (type II) phase-response curves point towards a transition based on a Hopf-Andronov bifurcation. In recordings from layer 2/3 pyramidal neurons in cortical slices, cholinergic action, consistent with down-regulation of slow voltage-dependent potassium currents such as the M-current, switched the PRC from type II to type I. This is the first report showing that cholinergic neuromodulation may cause a qualitative switch in the PRCs type implying a change in the fundamental dynamical mechanism of spike generation.
منابع مشابه
SYNAPTIC MECHANISMS Intrinsic subthreshold oscillations extend the influence of inhibitory synaptic inputs on cortical pyramidal neurons
Fast inhibitory synaptic inputs, which cause conductance changes that typically last for 10–100 ms, participate in the generation and maintenance of cortical rhythms. We show here that these fast events can have influences that outlast the duration of the synaptic potentials by interacting with subthreshold membrane potential oscillations. Inhibitory postsynaptic potentials (IPSPs) in cortical ...
متن کاملIntrinsic subthreshold oscillations extend the influence of inhibitory synaptic inputs on cortical pyramidal neurons
Fast inhibitory synaptic inputs, which cause conductance changes that typically last for 10-100 ms, participate in the generation and maintenance of cortical rhythms. We show here that these fast events can have influences that outlast the duration of the synaptic potentials by interacting with subthreshold membrane potential oscillations. Inhibitory postsynaptic potentials (IPSPs) in cortical ...
متن کاملLayer and frequency dependencies of phase response properties of pyramidal neurons in rat motor cortex.
It is postulated that synchronous firing of cortical neurons plays an active role in cognitive functions of the brain. An important issue is whether pyramidal neurons in different cortical layers exhibit similar tendencies to synchronise. To address this issue, we performed intracellular and whole-cell recordings of regular-spiking pyramidal neurons in slice preparations of the rat motor cortex...
متن کاملOpposing Cholinergic and Serotonergic Modulation of Layer 6 in Prefrontal Cortex
Prefrontal cortex is a hub for attention processing and receives abundant innervation from cholinergic and serotonergic afferents. A growing body of evidence suggests that acetylcholine (ACh) and serotonin (5-HT) have opposing influences on tasks requiring attention, but the underlying neurophysiology of their opposition is unclear. One candidate target population is medial prefrontal layer 6 p...
متن کاملInvolvement of nicotinic and muscarinic receptors in the endogenous cholinergic modulation of the balance between excitation and inhibition in the young rat visual cortex.
This study aims to clarify how endogenous release of cortical acetylcholine (ACh) modulates the balance between excitation and inhibition evoked in visual cortex. We show that electrical stimulation in layer 1 produced a significant release of ACh measured intracortically by chemoluminescence and evoked a composite synaptic response recorded intracellularly in layer 5 pyramidal neurons of rat v...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- PLoS ONE
دوره 3 شماره
صفحات -
تاریخ انتشار 2008